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List of Acronyms

ATLAS Advanced Topographic Laser Altimeter System

DSM Digital Surface Model

DTM Digital Terrain Model

COTS commercial off-the-shelf

EO Earth Observation

EO-1 Earth Observing-1

FOV field-of-view

GLAS Geoscience Laser Altimeter System

HyperLEAVES Hyperspectral-Lidar Elevation and Vegetation Satellites

HsypIRI Hyperspectral Infrared Imager

ICESat-2 Ice, Cloud, and land Elevation Satellite 2

LEO Low Earth Orbit

lidar light detection and ranging

MWIR mid-wave infrared

NASA National Aeronautics and Space Administration

NASEM National Academies of Science, Engineering, and Medicine

NDVI Normalized Difference Vegetation Index

NIR near-infrared

SWaP-C Size, Weight, Power, and Cost

SAR sythetic aperture radar

SRTM Shuttle Radar Topography Mission

SWIR short-wave infrared

TIR thermal infrared

1 Forestry Mapping Methods, Progress, and Direction

Forests play a critical role in regulating the carbon cycle on our planet. Many have argued that one
of the most cost-effective means of mitigating climate change available to us is to conserve our re-
maining forest stock and actively plant new trees [1]. Mangroves are particularly important, hav-
ing a significantly higher rate of carbon storage and sequestration than most terrestrial ecosystems
[2]. These same forests, mangrove and otherwise, have faced significant deforestration risks over the
past several decades and we are increasingly using space-based platforms to both monitor [3] and
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respond [4] to deforestation changes. With this increasing need has come the increasing availability
of sensing technologies. After decades of being limited to in-situ surveys (which are adept at cap-
turing numerous details of forests, but difficult to scale) and multispectral imagery (which are adept
at measuring large areas regularly, but only can be used for some classification and health proxy
measurements), we have light detection and ranging (lidar), sythetic aperture radar (SAR), and hy-
perspectral tools available to us. Airborne lidar can generate detailed point clouds providing infor-
mation about the vertical structure and understory of forests [5]. Space-based methods for studying
mangrove structure typically use SAR, such as that on TanDEM-X [6]; a combination of the Shuttle
Radar Topography Mission (SRTM) and ICESat’s Geoscience Laser Altimeter System (GLAS) [7],
with the former reliant on an assumption of a flat surface (water) under the canopy, limiting its
applications to only mangroves and similar aquatic vegetation; or very high resolution stereopho-
togrammetry [8]. Though no one method has emerged as clearly dominant, with each exhibiting
different error characteristics [8], these tools collecively have enabled better estimates of lobal man-
grove heights [9] and stored carbon [10].

One limitation with the above referenced studies of mangroves using visual and infrared
imagery is the assumption of uniform distribution of different mangrove species within the study
area. Different mangrove species have different spectral responses and different phenological tra-
jectories [11]. The Normalized Difference Vegetation Index (NDVI), one of the more commonly
used metrics for tracking mangrove health, varies significantly enough between mangrove species
that it has been used for species classification, particularly at higher spatial resolutions [12]. There
is thus room for improving mangrove health assessments for forest management purposes by in-
corporating more detailed species classifications. This is achievable through textural and object-
based analysis of high resolution images, such as those from airborne sensors or Worldview satellites
[12, 13, 14]. These, however, are not consistently available over time for either local or global man-
grove change-over-time analyses. Similar species differentation can also be achieved via pixel-based
analysis of hyperspectral data [15, 16], opening the door for a global species mapping using a space-
based hyperspectral sensor, particularly if used in conjunction with existing mangrove spectral li-
braries [17]. The National Academies of Science, Engineering, and Medicine (NASEM) 2018 Earth
Science Decadal Survey specifically cites the importance of species identification (including the use
of hyperspectral data) for understanding ecosystem functioning (pg. 375 of [18]).

There is also room for improvement with canopy and vertical structure mapping of forests.
In addition to the aforementioned space-based vegetation height measurement methods, there has
been the recent addition of Advanced Topographic Laser Altimeter System (ATLAS) on the Ice,
Cloud, and land Elevation Satellite 2 (ICESat-2). As its name suggests, ICESat-2 was not primary
designed for vegetation mapping and global biomass estimates, though this use was envisioned from
early in its development and vegetation data products were designed even prior to launch [19]. ATLAS
and its associated data products have promised significant improvements compared to its GLAS
predecessor [19, 20, 21]. That said, a more recent evaluation of these capabilities found significant
limitations, particularly over dense vegetation, even at the county scale (hundres of square kilome-
ters) [22]. Ultimately it looks like space-based lidar systems are still not in a position to either sup-
plant SAR in tree height mapping or to meaningful contribute to measurements of vertical structure
as their airborne counterparts do.

That said, there is significant promise on this front. Lidar technology is advancing rapidly
(discussed later in this proposal) and the NASEM 2018 Earth Science Decadal Survey listed space-
based lidar as either the preferred measurement approach or one option among several for seven of
their fourteen targeted observables [18]. Additionally, there is promise in combining space-based
lidar data from ICESat-2 with other data sources, such as SAR and visual imagery, to essentially
upscale canopy height and other lidar-observed vegetation attributes. [23].

This proposal builds upon these identified opportunities to develop a satellite mission con-
cept, called Hyperspectral-Lidar Elevation and Vegetation Satellites (HyperLEAVES), aimed at an-
swering the following questions:

1. Can a space-based hyperspectral imager provide sufficient spatial and spectral resolution to
enable forestry species differentiation?
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2. Can a space-based lidar system provide information on the understory, vertical forest struc-
ture, or even on individual trees, including height and tree crown shape?

3. Can hyperspectral and lidar data be combined to generate high-resolution mapping of forest
canopy height?

Section 2 will layout the high level design parameters of HyperLEAVES along with their
technical justification. Section 3 will then discuss potential data products and applications, includ-
ing those beyond mangrove forest monitoring.

2 HyperLEAVES Mission Concept

The HyperLEAVES concept involves two satellites in sun-synchronous, Low Earth Orbit (LEO) or-
bits such that one lags the other by approximately 12 hours. The first of these satellites, hereafter
referred to as HyperSat, would carry as its primary instruments hyperspectral visual and infrared
imagers with a spatial resolution of 30m in the visual to short-wave infrared (SWIR) regime and
60m resolution in the thermal infrared (TIR) reigme. The NASA-proposed Hyperspectral Infrared
Imager (HsypIRI) mission [24] is used in this proposal as a baseline reference for HyperSat. The sec-
ond satellite, hereafter refered to as LEAVES, would carry a single photon near-infrared (NIR) lidar
instrument. ICESat-2 is used as a baseline reference for LEAVES in this proposal.

The orbital lag between these two satellites is not disimilar to 3 hour lag between that of
AM/PM constellations which includes the Aqua and Terra satellites [25], and is intended to result
in LEAVES imaging some of the same areas as HyperSat, but at night in order to reduce noise for
the lidar system.

The specifications of the imaging systems, the satellites as a whole, and their orbits are
described in more detail throughout this section.

2.1 HyperSat

The objective of HyperSat is to enable species differentiation in mangroves and other forests. The
feasibility of this has already been demonstrated using the now defunct Hyperion imager, which had
a 10nm spectral resolution ranging from 357nm to 2.576µrad (visible through NIR) and a spatial
resolution of 30m [15]. Fortunately, National Aeronautics and Space Administration (NASA) has
already pursued the design of a full-scale followup to the Hyperion technology demonstration mis-
sion, called HsypIRI [24]. It should be noted that the HsypIRI design has gone through multiple
revisions since it was initially proposed in the 2007 Earth Science Decadal Survey [26]. Unless other-
wise stated, this proposal will be referring to the 2018 design parameters as specified in the HsypIRI
Final Report [24]. The general sensing parameters of this version of HsypIRI can be seen in Table 1.

The HyperSat concept maintains virtually all of the HsypIRI design parameters, only opt-
ing to reduce its orbital altitude from 504km to 480km. This is done primarily to accomodate the
stricter design constraints of LEAVES, as explained further in Section 2.2. The reduced altitude
results in a slightly improved spatial resolution, decreased swath width, and a slightly increased re-
visit period, assuming other design parameters, such as field-of-view (FOV) are kept constant. The
change in resolution can be calculated from basic trigonometry, assuming a curved Earth and nadir-
looking sensor. This results in a reduction of approximately 4.8% in both resolution and swath width,
though the imagery would probably be resampled back to its original values for interoperability ease
with other datasets. The reduction in swath width also impacts the revisit period, though this is
somewhat offset but the change in orbital period due to the reduced altitude. In general, the revisit
period scales according to Equation 1 [27]:

R ∝ sin(λ)

T
(1)

where R is the revisit period, λ is the earth central angle of the swath width, and T is the
orbital period. Using this equation suggests that the revisit period will increase by approximately
3.9% and 4.0% for the hyperspectral component and the multispectral IR components, respectively.
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The reduced altitude does come at another cost: reduced satellite lifetime. Atmospheric
drag (still non-negligible in LEO, particularly <1000km2) scales with atmospheric density, which in
turn scales with the negative exponential of altitude at low altitudes (<40km), but has more com-
plicated behavior in the LEO regime. Referring to the NRLMSISE-00 model of atmospheric density
[28] suggests that the atmospheric density between 504km and 480km differs by a factor of approx-
imately 200%, effectively halving the lifetime of HyperSat relative to HsypIRI, assuming equal or-
bital maintenance fuel capacity. While the HsypIRI Final Report does not contain mass estimates of
the entire spacecraft, it is probable that fuel reserves could be increased to return the lifespan to at
least the 2-4 year range.

These changes are summarized in Table 1 and do not compromise the objectives of Hy-
perSat. Obviously these estimations should be considered provisional, and more detailed numerical
analyses should be conducted to confirm the results shown here.

Table 1: HyspIRI and Hypersat specifications [24]

HyspIRI HyperSat

Orbit
Altitude 504km 480km
Lifetime 3-5 years 2-4 years

Optical Hyperspectral

Range 400-2500nm
Spectral Resolution 10nm
Spatial Resolution 30m ~28.5m

Swath Width 185km ~176m
Revisit Period 16 days ~16.6 days

Mass ~130 kg

IR Multispectral
Range 7-13µm 7-13um

# of Bands 7
Spatial Resolution 50 ~47.5m

Swath Width 518km ~493km
Revisit Period 4 days ~4.2 days

Mass ~100kg

2.2 LEAVES

The objective of LEAVES is to increase the received photon spatial density, relative to ICESat-2,
to the level required for high resolution canopy mapping, while staying within practical design limi-
tations, particularly with regards to power and laser performance. For simplicity, this preliminary
concept for LEAVES will keep ICESat-2’s six beam geometry, including three strong beams and
three weak beams, allowing for slope detection without incurring undue power requirements [29].
Similarly, the laser footprint will be maintained. This footprint, in conjunction with the six beam
configuration, means that gridded data products for the globe should be available on an annual ba-
sis, as is planned for ICESat-2 [19], with near-real-time releases of along-track data. The remainder
of this section will focus on the novel design elements required to reach the LEAVES objective.

There are several different factors which affect the precision of lidar data and derived data
products, including point/pulse density of the laser, height thresholds, laser footprint size, and sam-
ple size (for bulk metrics such as average tree height in an area). While point density is not usually
the limiting factor in airborne lidar systems, either for generating Digital Terrain Models (DTMs) or
for estimating bulk biomass estimates [30, 31, 32, 33], ICESat-2 is point density limited in areas of
dense vegetation, even at the 100m scale [22]. Individual tree crowns can be detected and measured
at 4-5 points/m2 and individual tree heights can be measured with 1 point/m2 [34]. More detailed
analysis of the understory, particularly in dense forests, requires densities of at least 12 points/m2

and sometimes up to 170 points/m2 [35]. These upper ranges are likely still infeasible for a space-
based lidar system, but densities in the range of 1-10 points/m2 are likely achievable. This means
that the signal photons received per square meter must be increased 1-2 orders of magnitude from
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the ICESat-2 ATLAS design, as seen in Table 2. Such a performance increase is not unprecedented.
ICESat’s GLAS was a traditional multi-photon lidar system using a NIR laser. ICESat-2’s ATLAS,
meanwhile, was able to achieve higher resolutions while using only about 1% the power [36].

In order to increase the spatial density to the requisite levels, LEAVES has several no-
ticeable design changes. First is its use of a 1050nm NIR laser rather than a 532nm green laser.
This change has several benefits. The atmospheric transmittance of 1050 nm light is approximately
10% higher than that of 532nm green light [37, 38], meaning that, assuming equal sensor sensi-
tivity, more signal photons will be received per pulse of equal strength. Additionally, due to their
lower frequency, 1050nm photons carry approximately half the energy of 532nm photos, reducing
the power requirements of the LEAVES laser. A NIR laser was used by ICESat’s GLAS but the
switch to a single photon design with ATLAS meant that higher sensitivity detectors were required.
These were practical in green but not in NIR [39]. In the intervening decade, however, there have
been advancements on this front. The first large-scale deployment of an airborne single photon lidar
system occurred in 2016, using green light [40]. Commercial development of such instruments has
since advanced [41, 42] and recent studies have demonstrated the feasibility of single photon NIR
[43] and mid-wave infrared (MWIR) [44] lidar systems. While these systems are not at the commercial
off-the-shelf (COTS) level yet, they are within reach of a dedicated development effort, similar to
the state of single photon lidar systems when development of ATLAS began.

The other primary changes are to the laser pulse repetition frequency and the pulse en-
ergy, increasing the former to 40kHz and the latter to 0.4 - 2.4 mJ. Both of these increases are well
within the reach of currently available technology. There is a green single photon COTS airborne
lidar system available from Leica Geosystems that uses a pulse repetition frequency of 60kHz [45],
while the previously referenced experimental single photon NIR system used a repetition frequency
of 100kHz [43]. Many traditional COTS lidar systems have repetition frequencies of 150kHz to 2MHz
[46]. All of these together suggest that 40kHz is readily achievable. Regarding increasing the pulse
energy, commercial lidar provides do not typically publish the pulse energy of their products, but
basic estimates based on the published pulse frequency and total power consumption of the prod-
ucts suggest that ATLAS is in line with standard COTS systems with regards to pulse energy. A
custom, high-end sensor for space applications can be hoped to exceed this.

We can combine these proposed design parameters to scale from ATLAS to LEAVES. Equa-
tion 2 does this for spatial density of recieved signal photons and Equation 3 does this for power
consumption, with the results seen in Table 2:

ρL =
ρAfp

te
(2)

where ρL and ρA are the spatial density of received signal photons for LEAVES and ATLAS,
respectively; f is the proposed factor of increase in pulse frequency (4); p is the proposed factor of
increase in pulse power (2); t is the ratio of atmospheric transmittance of 532nm to that of 1050nm
light (0.9); and e is the ratio of energy per photon of 532nm and 1050nm light (0.507).

PL = PAfp (3)

where PL and PA are the power consumption of the LEAVES lidar instrument and of ATLAS,
respectively. While the power increase is significant, it is not out of line with other Earth Observa-
tion (EO) satellites. While ICESat-2 has an overall power consumption of about 1.2kW, Aqua is
around 4.9kW [47] and Landsat-8 is around 4.3kW [48]. This suggests that a 1440kW instrument is
not all together infeasible. Mass of imaging systems generally scales with power consumption [27],
so the estimated LEAVES instrument mass (not the full satellite mass) is 1400 kg. Once again,
ICESat-2 is relatively light compared to Aqua and Landsat-8, so this increase should be manage-
able.
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Table 2: LEAVES and ICESat-2 lidar specifications [29, 49]

ICESat-2 ATLAS LEAVES

Footprint size 13m 13m

Laser wavelength 532nm 1050nm

Pulse repetition frequency 10kHz 40kHz

Laser divergence 20µrad 20µrad

Pulse Energy 0.2-1.2 mJ 0.4 - 2.4 mJ

Power Consumption 300W 1440W

Instrument Mass 298kg 1400kg

Point Density ~0.01-0.1 pts/m2 ~0.1 - 1 pts/m2

It should be noted that the above estimates assume no technological advances beyond
those specifically stated, leaving room for further improvement. For instance, if a single photon lidar
system is developed for 1550nm instead of 1050nm, further gains could be had in either signal pho-
ton density or power consumption, without sacrificing transmissivity of the atmosphere.

2.3 Size, Weight, Power, and Cost (SWaP-C)

As stated earlier, the HyperLEAVES concept calls for a sunsynchronous, circular or near circular
orbit, at an altitude of 480km. This is similar to ICESat-2, though ICESat-2 is not in a sunsyn-
chronous orbit precisely. This orbit is able to accomodate the objectives of both HyperSat, whose
passive imagers are best suited to the irradiance consistency of a sunsynchronous oribt, and LEAVES,
whose active sensor does not require a consistent solar overpass time but does require a relatively
low altitude, while also enabling a joint mission. The ideal US launch site is Vandenburg Space
Force Base due to its relatively northern latitude (34°43’N) and its ability to accomodate northerly/westerly
launches. The former is preferable as, unlike with most orbital insertions, sunsynchronous orbits are
a form of polar orbit that require the launch vehicle to counter most of Earth’s rotational velocity
rather than be assisted by it. A launch site farther from the equator reduces this extra effort. Simi-
larly, launching directly into a polar orbit requires the rocket to launch either directly north or even
somewhat westerly, which is more difficult to safely do from the the Florida and Texas launchsites.

In terms of mass of the satellites, it is expected that HyperSat will likely weigh approxi-
mately 1kg, as both of its instruments are approximately 100kg and the Earth Observing-1 (EO-1)-
1, which bore the Hyperion predecesor, had a mass of 573kg. This is relatively light compared to
other civil scientific EO satellites and may be surprising, considering that the high data generation
rate of a hyperspectral sensor may necesitate more on-satellite storage and/or heftier communica-
tions components. Such components are more than offset by the limited cooling requirements of the
HyperSat instruments when compared to the more sensitive, high precision infrared sensors found
on many major scientific satellites. LEAVES, meanwhile, owing to the higher power requirements
and the resultant likely higher complexity of the lidar instrument overall (including stricter ther-
mal constraints owing to its use of a NIR laser rather than a green one), will likely have a higher
mass, in the 2-3.5kg range. This is still will within the feasible range as many active sensing satel-
lites weight more than 3-4 kg (e.g. Aqua [47] and Terra [50]).

These combinations of masses and orbital trajectory are well within the abilities of many
medium-lift launch vehicles, including SpaceX’s Falcon 9, Northrop Grumman’s Antares, and Rocket
Lab’s upcoming Neutron, particularly if the the two satellites are launched seperately from one an-
other, as they almost certainly will be.

Power consumption can similarly be extrapolated from the instrument consumptions to
around 1kW and 3-4kW for HyperSat and LEAVES respectively. Both of these are within common
levels for satellites of their class and thus should be able to be accomodated with a reasonably sized
solar array.

The cost of HyperSat is likely to be relatively cheap, owing to it not relying on novel or
even particularly cutting-edge technology. The experimental EO-1 cost only around 200M$ at the
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time (around 290M$ in 2021 dollars) and HsypIRI was only estimated to cost around 500M$ [51].
LEAVES will likely be more expensive, in the 1-2B$ that many large civil scientific satellites cost,
including ICESat-2. It is possible that this price tag will be somewhat reduced by falling launch
costs, but the significant effort required to develop and test a single photon NIR lidar system of suf-
ficient power and precision will likely outweight any such savings. These estimates are summarized
below in Table 3.

Table 3: HyperLEAVES power, mass, cost, and launch estimations.

HyperSat LEAVES

Power 1kW 3-4kW

Mass 1-2kg 2-3.5kg

Cost 500M$ 1-2B$

Launch Site Vandenberg Space Force Base

Launch Vehicle
Medium-left launch vehicle

(e.g. SpaceX Falcon 9, Rocket Lab Neutron,
Northrop Grumman Antares)

3 Data Products and Applications

The data generated by the HyperLEAVES mission would have numerous uses, both scientific and
applied. The HyperSat sensors would enable vegetation species identification at a global scale through
spectral unmixing, enabling the determination of the mixture of species in particular area. Such
identification reduces error in vegetation health measurements (by taking into account differing
phenological trajectories and spectral responses of different species), allows for tracking of invasive
species of vegetation among native species, and assists forest management decisions by helping to
ascertain the exact contents of forest stocks without expensive and cumbersome in-situ surveys.

While achieving detailed, dense, three dimensional points of our planets forests from space
may still beyond our reach, LEAVES represents a significant step towards this goal, significantly
increasing point density without sacrificing resolution. This will enable more detailed vertical struc-
ture measurements of even dense vegetation, allowing for improved estimates of regional and global
carbon storage and biomass. Furthermore, when the two satellites of HyperLEAVES are used in
conjunction, there is the promising possibility of using HyperSat’s imagery to upscale the LEAVES
data, thereby filling in the gaps between the lidar tracks with estimates of tree height [23].

Beyond these forestry-specific objectives, the HyperLEAVES design also addresses, in full
or in part, severral other objectives of the earth science community, as seen in Table 4. Both hyper-
spectral imagery and more detailed space-based lidar systems are in high demand at the moment.
As multispectral imagery in both visible and IR ranges become increasingly available at <10 m res-
olutions and sub daily revisits, new scientific and application gains are to be found in other sensor
types.
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Table 4: HyperLEAVES power, mass, cost, and launch estimations.

Observing System Priorities HyperSat LEAVES

Aerosols Vertical Profiles
Partial (NIR laser may not be
sensitive enough to aerosals)

Aquatic-Coastal Biogeochemistry
Partial (does not meet
specified revisit rate)

Greenhouse Gases Addresses Addresses

Ice Elevation Addresses

Ocean Ecosystem Structure
Partial (is not multifrequency, NIR

rather than green limits
bathymetric applications)

Snow Depth and Snow Water
Equivalent

Addresses

Surface Biology and Geology Addresses

Terrestrial Ecosystem Structure Addresses

It should be noted that both of these satellites are likely to have high rates of data produc-
tion, particularly compared to their current generation counterparts. The data generation rate of
each of HyperSat’s sensors can be estimated using Equation 4:

B =
SnLv

r2
(4)

where B is the data production rate, S is the swath width of the image, n is the number
of bands, L is the luminosity levels per bands in bits, v is the ground track velocity of the satellite,
and r is the spatial resolution of the image. Based on this, HyperSat is likely to generate approx-
imately 50MB/s across its two sensors, compared to Aqua’s approximately 1MB across its sensors
[47]. This could be compressed significantly prior to transmission (which would require yet more
computing power available onboard the spacecraft) but is still likely to be high. Fortunately, by the
time that HyperLEAVES would launch, it is likely that a variety of commercial space-based data
transmission systems will be in place that will be able to accomadate this load (as evidenced by
NASA’s stated intention to switch over to such systems by 2030 [52]).
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