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Introduction

Over the past two decades satellite-based remote observation has blossomed. We have seen a rapid increase
in the number of Earth Observation Systems (EOSs) in orbit, significant improvements in their capabilities,
and much greater availability of the data that they produce. This trend has occurred as part of a greater
trend of increasing data availability, computational power, and modeling ability. Unfortunately, up until now,
this earth observation (EO) data has been largely used only by governments and academics for scientific
purposes, typically to understand and predict environmental phenomena. Large corporations and Non-
Governmental Organizations (NGOs) have recently been conducting their own analyses, but these have
required significant expertise and resources, and the results have sadly been mostly unavailable to the
broader public. There is a real need for (a) making remote observation data not just available but accessible
to a broader audience by developing data products that are relevant to every day individuals, (b) linking the
EO-supported environmental modeling with the societal impact of a changing environment, and (c) putting
policy and sensor design decision-making in the hands of a broader population.

This effort obviously requires the use of data and methods from a variety of fields, as well as a framework
to tie them all together. This Ph.D. general examination will cover the primary, technical, and contextual
topics related to designing EO-supported environmental and social modeling to inform policymaking and
technology design. The primary area focuses on approaches to multidisciplinary modeling, levers of policy
action, and complex systems engineering. The technical area covers the principles and design of EOSs,
as well as the use of the data that they produce for monitoring environmental and social phenomena. The
contextual area covers the history, theories, and tools of international economic development. This will
inform the kinds of policy decision and consequences to include in the modeling effort as well as ensure that
I make full use of modern techniques and also do not repeat some of the mistakes of many earlier, well
intentioned, American academics.
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Chapter 1

Primary Area:
Socio-environmental-technical
Systems Design, Modeling, and
Decision-Making

Examiner

Danielle Wood
Assistant Professor of Media Arts and Sciences
Program in Media Arts and Sciences
Assistant Professor (Joint) of Aeronautics and Astronautics
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

Biographical Information

Danielle Wood is an Assistant Professor in the Program in Media Arts & Sciences and holds a joint ap-
pointment in the Department of Aeronautics & Astronautics at MIT. Within the Media Lab, Prof. Wood
leads the Space Enabled Research Group which seeks to advance justice in Earth’s complex systems using
designs enabled by space. Prof. Wood is a scholar of societal development with a background that includes
satellite design, earth science applications, systems engineering, and technology policy. In her research, Prof.
Wood applies these skills to design innovative systems that harness space technology to address development
challenges around the world. Prior to serving as faculty at MIT, Professor Wood held positions at Na-
tional Aeronautics and Space Administration (NASA) Headquarters, NASA Goddard Space Flight Center,
Aerospace Corporation, Johns Hopkins University, and the United Nations Office of Outer Space Affairs.
Prof. Wood studied at MIT, where she earned a Ph.D. in engineering systems, S.M. in aeronautics and
astronautics, S.M. in technology policy, and S.B. in aerospace engineering.

Area Description

Integrating physics and engineering models has a long history and has become commonplace in the aerospace,
automobile, and silicon industries, among others. Integrating models from outside of physics and engineering
has also made progress. Where the design of government scientific EOSs previously relied on hand calcu-
lations and tables relating spectrum requirements, revisit rates, and spatial resolution to applications, it
now routinely makes use of custom-made models that link the simulation of the observing platform with
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a simulation of the environmental phenomena to be observed. As EO data has begun to be applied to
various humanitarian and sustainable development applications, numerous attempts have been made at us-
ing econometric models to quantify the value of various earth observation systems, but these almost all be
retrospective rather than adding in the design of future systems. The next step of integrating econometric
and policy models into the design process is essential if we would like to provide targeted remote observation
data to inform operational decision-making, rather than just trying to work with what we have available.
This is a major intended outcome of this doctoral project.

This kind of integration is also necessary ”post-launch” to actually make use of EO data in a policymaking
context. Be they government officials, NGO activists, or community leaders, those making policy decisions
rarely have the time or expertise to access even the processed data products from organizations like NASA
or Planet Labs and generate actionable environmental of societal data. The development and dissemination
of models to span this gap are thus necessary.

The bulk of this area is thus naturally dedicated to the method of modeling multidisciplinary systems that
involve technology, the environment, human society, and human decision-making. This includes literature
on the development and current state of multidisciplinary modeling itself, as well as on modeling each of
these specific fields. Modeling by itself is insufficient, however, which is why there are additional sections
on systems engineering and organizational political science. The former is necessary as not only is systems
engineering the traditional discipline that governs much of the design and production of EOSs (having in fact
largely originated in the aerospace domain), but it is also increasingly being applied in urban planning and
development contexts as well. I believe that various tools and approaches developed by systems engineering,
including systems architecture, stakeholder analysis, and tradespace exploration, are highly relevant to the
domains that this project seeks to address. The latter, organizational political science, will help me to
better understand both the workings of large institutions in general but also the particular ones that have
an important role to play in this domain. This builds upon the masters and doctoral work of Prof. Wood,
who sought to characterize the organizations pioneering space technologies in various countries around the
world. These same organizations are some of the key players in this project.

Written Requirement

A three day, take-home exam experience, in which each day the examiner will provide additional questions
aimed at applying the contents and methods of this area towards defining and structuring a future research
agenda for the EVDT framework beyond this doctoral work.

Signature:
Danielle Wood

Reading List

Sociotechnical Modeling and Design Methods

[1] Donella Meadows, Dennis Meadows, Jorgen Randgers, and William Behrens. The Limits to Growth.
Potomac Associates, Washington D.C., 1972.

[2] Richard de Neufville. Applied Systems Analysis: Engineering Planning and Technology Management.
McGraw-Hill, Inc., New York, New York, USA, 1990.

[3] R White and G Engelen. Cellular automata and fractal urban form: A cellular modelling approach to the
evolution of urban land-use patterns. Environment and Planning A: Economy and Space, 25(8):1175–
1199, August 1993.

[4] Daniel H. Rothman and Stiphane Zaleski. Lattice-Gas Cellular Automata: Simple Models of Complex
Hydrodynamics. Cambridge University Press, Cambridge, U.K. ; New York, September 1997.
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[5] J Sobieszczanski-Sobieski and R T Haftka. Multidisciplinary aerospace design optimization: Survey of
recent developments. Structural Optimization, 14(1):1–23, 1997.
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McGraw-Hill, 2000.
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Problem formulation and numerical comparisons. IEEE Transactions on Power Systems, 16(4):885–
891, 2001.

[12] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of Modern
Physics, 74(1):47–97, January 2002.

[13] Adam M. Ross, Daniel E. Hastings, and Joyce M. Warmkessel. Multi-Attribute Tradespace Exploration
as Front End for Effective Space System Design. Journal of Spacecraft and Rockets, 41(1):20–28, 2004.
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351, September 2005.
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465, January 2006.

[18] Olivier L. de Weck and Marshall B. Jones. Isoperformance: Analysis and design of complex systems
with desired outcomes. Systems Engineering, 9(1):45–61, 2006.
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phy, Vsevolod Afanasyev, Sergey V. Buldyrev, M. G. E. da Luz, E. P. Raposo, H. Eugene Stanley,
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2nd edition edition, 2007.
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May 2008.
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Chapter 2

Technical Area: Remote Observation
of Natural and Social Phenomena

Examiner

David Lagomasino
Assistant Professor of Coastal Studies
Department of Coastal Studies
East Carolina University

Biographical Information

David Lagomasino is an Assistant Professor in the Department of Coastal Studies at East Carolina Uni-
versity. He previously studied at Florida International University, where he received a B.S. and a Ph.D. in
Geological Sciences, in between which he received a M.S. in Geology at East Carolina University. Lagomasino
uses satellite, airborne, drone, and ground measurements to identify areas of coastal resilience and vulnera-
bility. His research links remotely sensed spatial data directly with stakeholders in order to address exposure
and sensitivity issues for coastal/wetland management and ecosystem valuation. He has been involved in a
number of coastal blue carbon projects with funding from NASA’s Carbon Monitoring Systems Program,
NASA’s Biodiversity and Forecasting Program, USDA’s National Forest Inventory Assessment Program,
NASA’s New Investigator Program, and the Center for International Forestry. His goal is to provide mean-
ingful information that will better inform coastal management practices while also inspiring students and
the community to become environmental stewards in order to help sustain our coastal resources. Prior to
his current post, he conducted research at NASA’s Goddard Space Flight Center just outside Washington,
D.C., in partnership with the University of Maryland, to develop models that measure the where when, and
why shorelines are the world are changing.

Area Description

The strengths and limitations of satellite-based earth observation are based on a combination of the funda-
mental physics of orbits and light, the practical considerations governing launch and station-keeping, and the
environmental and policy considerations in monitoring remote locations from space. In the technical area
of this examination, I will explore these principles of the electromagnetic spectrum, satellite, design consid-
erations, and stakeholder applications of remotely sensed imagery. Additionally, I will explore the plethora
of processing techniques and applications of EO data, including solar and atmospheric corrections, the use
of various spectral and textural indices, and the relevance of machine learning to identify both natural and
social phenomena from space.
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This information is necessary not only to meaningfully make us of EO data in the contexts in which I am
studying, but also so that I can incorporate the major design decisions and their impacts into the broader
integrated modeling effort. This is a major interdisciplinary field in its own right, involving aerospace engi-
neering, physicists, earth scientists, and computer scientists among others. As I have a previous background
in aerospace engineering and political science, this reading list instead leans more heavily on the data pro-
cessing fields, thereby insuring that I have a sufficient grounding to meaningfully contribute.

In addition to understanding the current state of the art for successfully applying remote observation
techniques in this project, it is also important to understand the history and development of the field as
well. Just as the design of EOSs has changed rapidly over the past decades, so as the image processing
techniques. Techniques have gone from simple indices computing on massive supercomputers, to globally
accessible datasets that can be processed with machine learning on the cloud using just a persona laptop
computer. This change is one of the major drivers in the accessibility of EO data to a wider audience and
thus a major enabler to this project. Understanding the technological advancement and community needs
critical to positioning this project to be relevant in the years to come.

Written Requirement

An single day (2-8 hours) written and practical exam answering key questions of remote observation principles
and applying said principles to specific situations. One 4-5 page, single-spaced satellite mission concept
proposal that details specific satellite specifications and theory, potential data products and use, and the
potential users and applications of the satellite.

Signature:
David Lagomasino

Reading List

Physics & Principles of Remote Observation

[1] Jon C. Leachtenauer and Ronald G. Driggers. Surveillance and Reconnaissance Imaging Systems: Mod-
eling and Performance Prediction. Artech House, Boston, MA, 2001.

[2] John Jensen. Remote Sensing of the Environment: An Earth Resource Perspective. Pearson, Upper
Saddle River, NJ, 2nd edition edition, May 2006.

[3] Paul M. Mather and Magaly Koch. Computer Processing of Remotely-Sensed Images: An Introduction.
John Wiley & Sons, July 2011.

[4] John A. Richards. Remote Sensing Digital Image Analysis: An Introduction. Springer-Verlag, Berlin
Heidelberg, fifth edition, 2013.

[5] Shunlin Liang. Comprehensive Remote Sensing. Elsevier, first edition, 2017.

Earth Observation System Design

[1] Wiley J. Larson and James R. Wertz, editors. Space Mission Analysis and Design. Microcosm, El
Segundo, Calif. : Dordrecht ; Boston, 3rd edition edition, October 1999.

[2] Vincent L. Pisacane, editor. Fundamentals of Space Systems. Oxford University Press, Oxford ; New
York, 2 edition edition, June 2005.
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[3] Michiko Masutani, Thomas W. Schlatter, Ronald M. Errico, Ad Stoffelen, Erik Andersson, William
Lahoz, John S. Woollen, G. David Emmitt, Lars-Peter Riishojgaard, and Stephen J. Lord. Observing
System Simulation Experiments. In Data Assimilation: Making Sense of Observations, pages 647–679.
Springer, New York City, NY, 2010.

[4] James Wertz, David Everett, and Jeffery Puschell. Space Mission Engineering: The New SMAD.
Microcosm Press, 2011.

[5] Alessandro Aliakbargolkar. A Framework for Space Systems Architecting under Stakeholder Objectives
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[6] Daniel Selva Selva Valero. Rule-Based System Architecting of Earth Observation Satellite Systems. PhD
thesis, Massachusetts Institute of Technology, 2012.

[7] Ronald M. Errico, Runhua Yang, Nikki C. Privé, King Sheng Tai, Ricardo Todling, Meta E. Sienkiewicz,
and Jing Guo. Development and validation of observing-system simulation experiments at NASA’s global
modeling and assimilation office. Quarterly Journal of the Royal Meteorological Society, 139(674):1162–
1178, 2013.

[8] Alan S. Belward and Jon O. Skøien. Who launched what, when and why; trends in global land-cover
observation capacity from civilian earth observation satellites. ISPRS Journal of Photogrammetry and
Remote Sensing, 103:115–128, May 2015.

[9] Sujay V Kumar, Christa D Peters-lidard, Dalia Kirschbaum, Ken Harrison, Joseph Santanello, and Soni
Yatheendradas. A mission simulation and evaluation platform for terrestrial hydrology using the NASA
Land Information System, 2015.
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mance Metrics, Error Modeling, and Uncertainty Quantification. Monthly Weather Review, 144(2):607–
613, 2016.
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Roger, Sergii V. Skakun, and Christopher Justice. The Harmonized Landsat and Sentinel-2 surface
reflectance data set. Remote Sensing of Environment, 219:145–161, December 2018.

[12] Engineering National Academies of Sciences. Thriving on Our Changing Planet: A Decadal Strategy for
Earth Observation from Space. January 2018.

Earth Observation of Natural Phenomena

[1] M.H. Julien, M.P. Hill, T.D. Center, and Ding Jianqing. Biological and integrated control of water
hyacinth , eichhornia crassipes. In Proceedings of the Second Meeting of the Global Working Group for
the Biological and Integrated Control of Water Hyacinth, volume 102, Beijing, China, 2000. Australian
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The first section of this area covers some important works in planning theory, as these undergird many
of the more applied techniques and analyses of the field. The next three sections focus on the development
of modeling and visualization techniques for urban decision-support, particularly those based on Geospatial
Information System (GIS). These sections represent the state of the art in urban development decision-
support, with the later sections providing additional context on these tools. The fifth and sixth sections
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visualize themselves, how do indiviuals use data to participate in governance, and what challenges exist
for such laypeople. Academics, myself included, are often most at home in collaborating with government
officials and other technical experts. While not necessarily harmful, this approach does run the risk of having
a mistaken impression of ”things on the ground” and of contributing to already lopsided power structures.
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[24] Z. Aslıgül Göçmen and Stephen J. Ventura. Barriers to GIS Use in Planning. Journal of the American
Planning Association, 76(2):172–183, March 2010.

[25] Michael F. Goodchild. Twenty years of progress: GIScience in 2010. Journal of Spatial Information
Science, 2010(1):3–20, July 2010.

[26] Jan H. Kwakkel, Warren E. Walker, and Vincent A.W.J. Marchau. Classifying and communicating
uncertainties in model-based policy analysis. International Journal of Technology, Policy and Manage-
ment, 10(4):299–315, January 2010.

[27] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. Geographic Information
Systems & Science. Wiley, Hoboken, NJ, 3rd edition edition, August 2010.

[28] Yupo Chan. Location Theory and Decision Analysis: Analytics of Spatial Information Technology.
Springer, Heidelberg, 2nd ed. 2011 edition edition, August 2011.

[29] Eric Gordon and Edith Manosevitch. Augmented deliberation: Merging physical and virtual interaction
to engage communities in urban planning. New Media & Society, 13(1):75–95, February 2011.

[30] C. Dana Tomlin. GIS and Cartographic Modeling. Esri Press, Redlands, Calif, illustrated edition edition,
October 2012.

[31] Robert (Robert Charles) Goodspeed. Planning Support Systems for Spatial Planning through Social
Learning. Thesis, Massachusetts Institute of Technology, 2013.

[32] Todd D. Little. The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis. Oxford
University Press, February 2013.

[33] Petina L. Pert, Scott N. Lieske, and Rosemary Hill. Participatory development of a new interactive
tool for capturing social and ecological dynamism in conservation prioritization. Landscape and Urban
Planning, 114:80–91, June 2013.

[34] Marisa A Zapata and Nikhil Kaza. Radical uncertainty: Scenario planning for futures. Environment
and Planning B: Planning and Design, 42(4):754–770, July 2015.

[35] H. R. Maier, J. H. A. Guillaume, H. van Delden, G. A. Riddell, M. Haasnoot, and J. H. Kwakkel. An
uncertain future, deep uncertainty, scenarios, robustness and adaptation: How do they fit together?
Environmental Modelling & Software, 81:154–164, July 2016.

[36] Uri Avin and Robert Goodspeed. Using Exploratory Scenarios in Planning Practice. Journal of the
American Planning Association, 86(4):403–416, October 2020.

[37] Robert Goodspeed. Scenario Planning for Cities and Regions: Managing and Envisioning Uncertain
Futures. Lincoln Institute of Land Policy, Cambridge, May 2020.

[38] Sarah Williams. Chapter 4: Share It! Communicating Data Insights. In Data Action: Using Data for
Public Good. MIT Press, Cambridge, MA, first edition, December 2020.

Public Participation GIS & Critical Cartography

[1] John Pickles, editor. Ground Truth: The Social Implications of Geographic Information Systems. The
Guilford Press, New York, 1st edition edition, December 1994.

21



[2] Eric Sheppard. GIS and Society: Towards a Research Agenda. Cartography and Geographic Information
Systems, 22(1):5–16, January 1995.

[3] F Harvey and N Chrisman. Boundary Objects and the Social Construction of GIS Technology. Environ-
ment and Planning A: Economy and Space, 30(9):1683–1694, September 1998.

[4] Emily Talen. Bottom-Up GIS. Journal of the American Planning Association, 66(3):279–294, September
2000.

[5] Jeremy W Crampton and John Krygier. An Introduction to Critical Cartography. ACME: An Interna-
tional Journal for Critical Geographies, 4(1):11–33, 2005.

[6] Renee Sieber. Public Participation Geographic Information Systems: A Literature Review and Frame-
work. Annals of the Association of American Geographers, 96(3):491–507, September 2006.

[7] Annette M. Kim. Critical cartography 2.0: From “participatory mapping” to authored visualizations of
power and people. Landscape and Urban Planning, 142:215–225, October 2015.

Data in Governance

[1] David E. Boyce. Toward a Framework for Defining and Applying Urban Indicators in Plan-Making.
Urban Affairs Quarterly, 6(2):145–171, December 1970.

[2] Douglass B. Lee Jr. Requiem for Large-Scale Models. Journal of the American Institute of Planners,
39(3):163–178, May 1973.

[3] Frédérique Apffel Marglin and Stephen A. Marglin, editors. Dominating Knowledge: Development,
Culture, and Resistance. Clarendon Press, Oxford : New York, 1 edition edition, October 1990.

[4] Seymour J. Mandelbaum. Making and breaking planning tools. Computers, Environment and Urban
Systems, 20(2):71–84, March 1996.

[5] Eric J. Heikkila. GIS is Dead; Long Live GIS! Journal of the American Planning Association, 64(3):350–
360, September 1998.

[6] Thomas G. Weiss. Governance, good governance and global governance: Conceptual and actual chal-
lenges. Third World Quarterly, 21(5):795–814, October 2000.

[7] Michael F. Goodchild and Donald G. Janelle. Toward critical spatial thinking in the social sciences and
humanities. GeoJournal, 75(1):3–13, 2010.

[8] Martin Dodge, Rob Kitchin, and Chris Perkins. Rethinking Maps: New Frontiers in Cartographic
Theory. Routledge, June 2011.

[9] Stephen Goldsmith and Susan Crawford. The Responsive City: Engaging Communities Through Data-
Smart Governance. Jossey-Bass, San Francisco, CA, 1st edition edition, August 2014.

[10] Annette M. Kim. Critical cartography 2.0: From “participatory mapping” to authored visualizations
of power and people. Landscape and Urban Planning, 142:215–225, October 2015.

Big Data Theory & Ethics

[1] Jennifer S. Light. From Warfare to Welfare: Defense Intellectuals and Urban Problems in Cold War
America. JHUP, Baltimore, Md., August 2005.

[2] danah boyd and Kate Crawford. Critical Questions for Big Data. Information, Communication &
Society, 15(5):662–679, June 2012.

[3] T.J. Barnes and M.W. Wilson. Big Data, social physics, and spatial analysis: The early years - Trevor
J Barnes, Matthew W Wilson, 2014. Big Data & Society, 1(1), 2014.

22



[4] Sakiko Fukuda-Parr, Alicia Ely Yamin, and Joshua Greenstein. The Power of Numbers: A Critical
Review of Millennium Development Goal Targets for Human Development and Human Rights. Journal
of Human Development and Capabilities, 15(2-3):105–117, July 2014.

[5] William Easterly. The Tyranny of Experts: Economists, Dictators, and the Forgotten Rights of the
Poor. Basic Books, 1 edition edition, March 2015.

[6] Sean McDonald. Ebola: A Big Data Disaster. Technical report, The Centre for Internet & Society,
Bengaluru, India, January 2016.

[7] Cathy O’Neil. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democ-
racy. Crown, New York, 1st edition edition, September 2016.

[8] Shannon Mattern. A City Is Not a Computer. Places Journal, February 2017.

[9] Virginia Eubanks. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor.
St. Martin’s Press, New York, NY, January 2018.

[10] Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press,
New York, illustrated edition edition, February 2018.

[11] James C. Scott. Seeing Like a State: How Certain Schemes to Improve the Human Condition Have
Failed. Yale University Press, March 2020.

[12] Sarah Williams. Chapter 4: Share It! Communicating Data Insights. In Data Action: Using Data for
Public Good. MIT Press, Cambridge, MA, first edition, December 2020.

Environment & Development

[1] Maria Carmen De Mello Lemos. The politics of pollution control in Brazil: State actors and social
movements cleaning up Cubatão. World Development, 26(1):75–87, January 1998.
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